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ABSTRACT

The unsteady 1lifting surface approach lg utilized
for the marine propeller case and the corresponding surface
integral equation 1s solved for the Welssinger mathematical
model: The applicability of the Weissinger method to the
nonstatlonary flow case is studled: The kernel function is
expressed 1n closed forms after some mathemabical simplifica-
tion: From numerical calculations of propeller loading
which are restricted to a four-bladed propeller of sector
type blade form with different blade-area ratios and various
pltch-diameter ratios, concluslons are drawn as to three-
dimensional effects as well as to the dependence of propeller
loading on the important parameters, as the blade-area and
pitch-dliameter ratios.
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INTRODUCTION

The ship hull induces a disturbance flow upon the
propelier plane. Although, in general, this flow is time-
independent, its distribution on the propeller plane is non-
uniform, and hence the rotating blades, which cut through
this disturbance, experience time-dependent gust. If this
disturbance flow is expanded into angular harmonics, each
component exerts a sinusoidal gust upon the blades. Using
Sears' two-dimensional response function for the sinusoidal
gust? in a stripwise manner, Breslin et al® evaluated the
oscillatory thrust and torque of the propeller due to this
kind of disturbance. However, correlation with existing

experimental results was very poor,> and they attributed this

to application of the two-dimensional method to a typically
three-dimensional problem.

At this stage, it seems important to try a three-
dimensional approach. The three-dimensional lifting surface
integral equation for the screw propeller in a steady flow
was derived by Sparenberg.? A slight modification gives the
equation for the non-steady state. The nature of this equa-
tion was examined by Hanaoka.’

Owing to the complicated form 6f the kernel, how-
ever, 1t seems difficult to treat this equation in an exact
form. In this report, by adopting the Weissinger approxima-

tion, the surface integral -equation is converted into a span-

wise line equation. The applicability of the Weissinger
method to the three-dimensional propeller problem in the
sfteady condition has been well examined, but applicability

to the non-steady problem remains to be tested. In Appendix A

the two-dimensional sinusoidal gust problem is treated under
the Weissinger approximation and the result is compared with
Sears' exact value. The result is also applied stripwise to
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the present problem and a comparison with the results of the
three-dimensional Weissinger approach is shown. This com-

parison (both approaches are obtained under the same Weissinger

approximation) will provide important knowledge on the three-
dimensional effect in the non-steady state.

FORMULATION OF PROBLEM

In this section the derivation of the integral
equation for the angular harmonic component of the disturbance
flow is shown. Use is made of the acceleration potential
method. The necessary notations concerning the coordinate

system are shown in Fig. 1.
The pressure field Pp(x,r,¢) due to a unit pressure

pole 1(&,p,8) is given by

ﬂ%_ = (1)
p "T,\/(X_g)2 + r® + p® - 2r pcos (9—¢>)

If the pole 1s pulsating in its strength with frequency w and

P

. rotating in the negative direction of & with angular velocity Q.

1 eiwt ()
P_= o
P EE'J(X—ﬁ)Z + r® + pf - 2r pcos (GO—Qt—¢)

The linearized relation between the perturbation veloclity
potential ®(x,r,¢,t) and the corresponding pressure field
P(x,r,¢,t) in the main (x-direction) uniform flow U is given by

00 L 30 1
Uk T 5T T T (3)
where p is the density of the fluid. If it is assumed that
® =0 at x = -0, the solution ® for given P is
- 1 x 1 T'-X 1
¢ = -7 S_OOP(T,rJqs,t + =) ar (%)
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On substituting eq. 2 into eq. 4 and putting 7' = T+£€, the
velocity potential ®p corresponding to Pp of eq. 2 becomes

.
® T—eimt Swg elU(T - d (5)
_ T
p il _m‘v@2+r2+p2-2rpcos[GO-Qt-%(T'X+€)'@]

When the observation point (x,r,¢) is rotating together with

the pressure pole, putting ¢ = ¢O - Qt,
x—€ L
eiwt . 1ﬁCT—x+€)
% = " Tmw | aT
P H N T2 p? —2rpcos[:(90—¢o)—9 (T—X+€{] (6)
-0 '~[‘J-"

If the pressure pole is replaced by a dipole, the correspond-
ing velocity potential @d is

3
o, = 2o, (7)
d Sy p .

where Ji—is a differential operator with respect to (¢, Ps 90)

X
in the direction of the dipole axis. Velocity induced by this

dipole is
Wd (X’r’(bo) -:..i cI)d =__a__ _é_ (I)p (8)
ox? ox't oY
where-gL- is an operator with respect to (x,r9¢o) in the
X?

designated direction of the velocity.

In the acceleration potential method, the lifting
surface is regarded as a mono-layer of pressure dipoles, the
axis of which is normal to the surface and the strength of
which is proportional to the pressure jump across the surface.

Therefore, it is easily seen that eq. 8 is the elementary com- .

ponent of the 1lifting surface integral equation for the simple
harmonically time-dependent problem of a rotating system.

R-940
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The phenomena appearing at corresponding points on
all blades due to the gth harmonics of the disturbance flow
are expressed in the followling simple form:

e, - ¢, etalor - B ] (9)

where én = %?(n - 1), n is the name of the blade n = 1, 2,

e.s..N, and N is the total number of blades. Summing up the
~effect of all blades upon a particular blade (n = 1), and
considering that the geometrical equation of the lifting sur-
face of the screw propeller is expressed by

1

_ . 1 _ Q .
X =< ¢ (or & = = GO), where a = (10)

leads to the integral equation for the presént problem which
can be written as '
ig(ot - ¢ )  ia0t //
V(r)e = e 8(p,6 ) K(r,¢ ,p,0,)a0 dp  (11)
D0 ©
Here S(p,eo) is the 1ift distribution on the blade, and

K(r,qypﬁg) is the kernel, which is obftained in the following

form by using egs. 6 to 10

K(r,d 0,6 ) = - _* ilim 3 3
. 2 O! fo) )_[_Tr“U n=l l B& ‘6}?1 o
6 = H{¢,-6.)-(x-€)—0
x~€ .'eiq{}9n+a(7—x+§)] .
= T

~/’r2+r2+p2~2rpcos[:(6’0—¢O)+6n —a(T—x+€ﬂ : (12)

The directions of the differentiations in éi and §§7 are
' O0X X

perpendicular to the lifting surface, that is, from eq. 10

R-940
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° - __r <ai_i__§__>

ox! y 1+a®r®

° . ___p___<ai__l___§_)
p2

S;. N 1+a® p?

The limiting process

1im & = (x—e)'—.i(¢b—eo)—+o
a

(13)

is introduced in order to avoid the difficulty due to the
singularity in the mathematical manipulations. Physically,
it means that the manipulations are performed taking the con-
trolling point on a surface slightly shifted from the 1lifting
surface and that finally the former surface is brought in-
finitesimally close to the 1att¢ru

SOLUTION BY THE WELSSINGER APPROXIMATION

APPLICATION OF THE WELSSINGER METHOD
AND SOLVING PROCEDURE "

In the Weissingér method, the surface distribution
of the 1lift is réplaced by a line distribution along the
1/b4-chord line, and the controlling points are taken along
the 3/b-chord line. This method gives an exact 1ift for the
two-dimensioﬁal stationary wing problem, and it is applicable
also to the stationary three-dimensional wing problem under
the assumption of not too low aspect ratio. In fact, in the
stationary propeller problem, it has been shown that this
method can describe the effect of the helical free vortex

fairly well.

However, in the nonstafionary case, there is another
kind of free vortex which is paralle; to the span (in the
propeller problem the radial free vortex), and it seems not
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to have been clarified how pfecisely fhe Weissinger model can
obtain the effect of the latter kind of free vorte:. The

_ applicability of this method to the nonstationary problem is
tested in Appendix A by treating the two-dimensional sinus-
oidal gust problem. The result indicates that this method
can be used up to a reduced frequency of 1.3, which corre-
sponds to blade frequency harmonics (g = N) in a propeller of
area ratio 0.4.

This approximation is based upon the first and
second terms of Birnbaum's chordwise 1ift distribution, and
hence on the left-hand side of the integral equation the cor-
responding components should be picked up. In the two-
dimensional stationary case, this can be done exactly by
applying Glauert'®s 1lift operator;

T

5(1 - cos a)do where x = -b cos a, x is the chordwise
cogrdinate and b is the semi-chord length. The same operator
i1s tried for the two-dimensional but nonstationary case in
Appendix A, and the result indicates its satisfactbry applica-
tion to the nonstationary case up to the reduced frequency
1.3. In the following. treatment, the same procedure will be
used for the nonstationary three-dimensional case under the
assumption of a not too low aspect ratio.

Thus, the application of the Weissinger method con-
verts eq. 11 (the surface integral equation) into the follow-
ing line integral equation:

1
Iy
w(r) = Yo(p)K(r,p)dp (14)
0
where aT -
S 1g0,cos a :
W(r) = v (r) e (1 - cos a)da (15)
0
L(p) is spanwise line distribution of 1ift,
K<P:P‘) = [K(I’:¢O:Pxeo):'¢ -0 =29 (16)
e} o b
R-940
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and

Gb is semi-chord length.

The integral equation (eq. 14) can be treated in
the following way. By dividing the span into intervals of
equal length 24, and regarding the 1ift distribution on each
fraction as uniform, eq. 16 can be written in the form of a
set of simultaneous linear algebraic equations '

'[Wp] - [Bpq ][5 - | (17)

The element of the kernel matrix is given by

r +4

L. =S : K(rp . p)dp . (18)
r

The singularity of eq. 12 is involved in the element Kpp’ but
that singularity is integrable in the p integration. Thus, the
kernel matrix elements are free from singular behavior, and
the spanwise 1ift distribution L for given W_, and, in
addition, the inverse'matrix of‘[Kbd], can be obtained without
any difficulty. In the nonstationary problem, all the ele-
ments in eq. 17 are complex numbers. Hence, 1f the span is
divided into P parts, the kernel matrix is of the order

2P x 2P, but a conventional digital computer can easily give
the required results.

SIMPLIFICATION OF THE KERNEL

By putting vy = -a{7 - x + £), interchanging the
order of the integral sign and differential operation in
eq. 12 becomes possible. The term within the brackets of
eq. 12, designated now by H, becomes on substituting eq. 13;

R-940



: -1 (5 +y
H=—-1—S . a n ) _r (ai l 8 a__!.é__a_)
A a o : 1+52p2 - dx r® qu Vl'f'a P O
' e ————ay  (19)
‘N/[%y>(x—€)]2 + r% + p® - 2rpcos [(901%9 + 6+ y:]
Further, if
57 - (x-6) =X ana 6, + (6, - ¢) +y =60, (20)

[ee]

- ~
H = "g.].e'IQ(9n+Y)— —L (a9 -1 9y B (50 _1 3,
0 1+a2p® Ox 1% 00 Yita2p2 X p= 6
1 | dy
2, .24 2 ‘ = 8 - —
A X2+124p2-2rpcos® | 6 = 6, + (GO ¢O) +y (21)

X =2y - (x-6)

Changlng the integral variable from y to ©

1 - -iq/6 - (6 _-¢ )
H = —% S e [ o) o] .
9n+(eo—¢o)
(20 L 08y _p (2 _1 3,
VHfﬁ M r? 00 4/1+a%p? ox  p® 00
1 L - de
\/X2+r2+p2—2rpcos® X = % &~ =6 +56 (22)

where, § = %‘(¢0—90) - (x - &)

Here, under the assumption that the pitch of the propeller is
low--i.e., a is large-—-the followlng two approximatlions are
Introduced:

R-940
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i

) __r (, 9.1 3,3

@/1+a2r2 (a ox  r® 8®)—$5x
(23) .

P 3 1 9 d

2) the change shown in Fig. 2 of the integral path in
eq. 22 from the original one expressed by light solid
lines to the heavy solid lines.

These two approximations give K, eq. 12, in the following form:

1 —lady
K = TruUa  © [k, + %] ,

where,
N NSO g~ 1a® | de
Kf:Z; Hm § - dx? 4/ XZ+r%+p%-2rp cos O X=6
n=l 6-0
6 -(¢,-6)
21 R
© -1g®
d2 e 4
Kg= lim 23 g - S_E 2, 2, 2 15 5 de
: 6-+0 m=1 0 X fVX +r=+p=~2rp cos @ X=m5 O+
(24)
= _em
% =T

and (¢O —90) = éb in the Weissinger approximation.

The approximations 1) and 2) are rather rough ones
if they are adopted separately, but thelr combined use is
Justified by a clear geometrical meaning as well as good
numerical results. This point is discussed in Appendix B.

It is also worthy of notice that K, depends upon eb,
the semi-chord length, but is independent of a, the inverse
of pitch. On the other hand, K. depends upon the pitch but
1s independent of the chord length. This fact is a great con-
venlence for the numerical calculations.

R-940




EVALUATTION OF THE KERNEL

K, - When p % r, the 1imiting process 60 can be taken
before the integration, then

a0 (25)

N
K, = E:

n=1

en+(eo/2) .~1q6
(Jr2+p2—2rp cos 0)°

Gn—Gb

Further,
S en+eo/é _~108

3.3 yr®+p3-2rp cos ©
b

- 46

~1/é(w+§n_§o/é)

yarl 2 ety

(r+p)2 JI-KZsindy ©

|
—

1
-

dy

(0B B (26)
-1/é(ﬂ+en-eb)
where;
Y o= - % (7+6) and ¥® = TR (27)
(r+p)®
As is shown in Appendix C, the integral
7 i2qy
1= (v e _ay (28)
4 J/1 = K2sin®y |
w&
can be evaluated by the following recurrence formulas
_hn 2 antl
Thtl = Zn-T (1 - E}J Th - (En—l) Thaa
L2 2 o120y (28
2n-1 ?

k2 A/ 1-k®sin®y
Ve

R-940
~10~




D ) R RS N )

[e) [N e

e e D) DR G0

and

1 - k2 1-k®sin®
Yy
wu ?'Du
I, = (1--2) Id*g' F(k, ) T RO — (29)
k= k2 kz,/l-kesinzw
Vs » v,

where F(k,¥) and E(k,¥) are elliptic integrals of the first
and second kind, respectively. In the case of p % a, the
integration with respect to p in eq. 18 can be evaluated by
conventional numerical methods or by taking some conventilonal

mean value.

In the narrow band expressed by lp - rpk<:rp, which
exlsts in the element p = ¢, a special treatment is necessary.
As is shown in Fig. 3, this area is divided into the following

three regions:

1) r_ - e <p<r_ + e (0<e<p, B)and-v<0<y (0O<y«l),
1Y o b o s

which include the singular point p = r_ @ = O, (double
hatched region) p

2) r_ - ed<p<rp + €5 but excluding - y<6<y, (dotted

b
region)
3) ry, - By< p<Ty - & and rp + €< p-<rp + Bo, (single

hatched region)

Designating the contribution of these three regions of K, as
J,, Jp and Jz respectively, eq. 24 gives

r + € Y ~2 e—iq@

dae dp (30)

T. o= 14 D o d
N im -—
5=X-0 3@ NXP+r2+p2-2rpcos®
r. - € 9=

R-940
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ro+ e, - 1/26 ﬁ% 9n+1/'eeO
Jdy, = 1lim + + - ). =
§=X-0 n=LJg _8
v~ € -6 n b
o] o b %y
2 ~-ig®
-3 e @ dp (31)
dx2 VX2 412+p2-2rpcosd
Ty T €, rp‘+ Bs
Jg = lim + .
X=6—0
_rp - Bl I’p -+ EO
N 6, + 1/’29O 52 e—iq@
> R ae dp (32)
n=1 y_ _ ox2 VX?+T2+p2—2rpCOS@
- 06
n b

The most convenient form for evaluating the total contribution
J of these three parts 1s the limit value expression:

J= 1im (3, +J, + J,) (33)
€570

As is seen in Appendix D:

il
1im J, = 1lim -
e—0 . €e—0 r € (3m
e} 0 p o

The integrand of J, is finite through the whole integration

range, and hence

(35)

It
(@]

lim
€ —0 Iz
o)

In Appendix E, J; is given in the following form:

R-940
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lim  J, = lim |——]+ 2 -1 okt 1n () (B -1/2)
r €, (r. )2 I

1
€50 €30 D ki
+1
1, (1) =
1 - - _— Tt i -
+ k! (Aq Byttt 3 Iq)] (36)
where Bl and B, should be taken to satisfy the relation
& B
k{ _ i - 2 5 (37)
2rp~ﬁl 2rp+52
where
— -1/2(7-6,) - N -1/2(mt6 _+6 _/2)
I} = —S - + 5
0 —l/2(7r+90/2) "1/2(“+9n‘9b)
eingd

‘} T-sinZy

Aq, Bq and Iq are given in Appendix D.

An important cancellation occurs between lim J, and the first
berm of lim J,. €570
6690

K2 . No singularity is involved in Kg. Taking the limit
value before integration and replacing the summation with in-

tegration
] 2 52 e_iq® i
K, = S S 1= 4o dm
m=t1/2 Jo_o | \/x +#r+p®-2rpeos | y _ g 7p) 5
(38)
a |5 7 s 30 ”
9% | S ‘ JX2+r2+p2—2rpcos®
& =20 X = 13
2a ©
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Using the Lipschitz integra16 and Neumann's addition theorem’

2m e—iq@
G = S de
o v&2+r2+p2—2rpcos® o)
L 39
o S1g0 ¢ o Xl
= S € S Y e, J,(kr)J (kp)cos mo dkde,
8 =0 k=0 m=0
where
1 for m =0
€n =
2 for m # 0
Further,

2 2 2
r= + p~ + X (41)

The function @ 1 /5> j¢ 5 spherical function. Numerical tables

of Qq—l/'2 necessary for the followlng treatment are given in

ref. 9.

a ji ag
RY/ 1/2 ox
(42)

2
- &
Ts/é' = [Z -1/2lD - 83207 ]

R-9U0
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The behavior of Qn—l/é for large Z is
[os]
2
Q =1/2 f (" (nts+1/2) Z \nts+l/2 (43)
n-l/2 S=JO ——ee e (Z+1)

s! (n+s)!

Hence 1in the present problem with q> 0,

s
[ax G] _ =0 (L4y)

Thus, finally
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NUMERICAL RESULTS AND DISCUSSION

Calculations have been performed to assess the
theoretical approach evolved here and to determine the three-
dimensional effects in the stationary and nonstationary flow
cases as well as the effects of such important parameters as
blade-area ratio and pitch angle. The calculations have been
restricted to a four-blade propeller with sector type blade
form and blade-area ratios Ag = 0.22, 0.44 and 0.66 and to a
constant amplitude gust velocity from root to tip expressed
by W = W_e 19,

The results are exhibited in Figs. 4, 5 and 6 and
summarized in Table I for frequencies g = O to 4 and for
representative values of inverse pitch angle, a , which
bracket the range of pitch-diameter ratio of practical in-
terest; l.e., a = 2w, P/D =1/2 and a = w, P/D =1, 1In the
same figures the results of calculations for Weissinger's
two-dimensional model by a stripwise method are presented for

comparison.

As a measure of the three-dimensional effect, Ry »
is introduced to indicate the ratio of the three-dimensional
results for total 1lift to the corresponding two-dimensional
value:

R _ load by three-dimensional calculation
8/2 load by stripwise two-dimensional approach

Since the three-dimensional and two-dimensional results are
obtained through the same Welssinger approximation, Ry, can
be said to be a well-defined measure of the three-dimensional
effect.'

It is seen from Figs. 4, 5 and 6 that the ratio
Ry /o decreases for decreasing order of harmonic q. This in-
dicates that the over-all correction for three-dimensional

R-940
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effects is much more pronounced in the stationary case than
in unsteady flow, a fact which can be explained at least
qualitatively, in the following manner. The propeller, as
any other lifting surface of finite aspect ratio, is accom-
panied by two free vortex systems. As a result of the span-
wise gradient of the circulation, a free vortex system is
developed along the helicoidal surface. On the other hand,
the timewise change of circulation leads to a radial free
vortex system. The first system is characteristic only of
three-dimensional flow conditions whereas the second 1s pre-
sent as well in the two-dimensional model and to the same ex-
tent. In the marine propeller case due to high load and
rather low pitch, the effect of the first vortex system is
heavlily accumulated in stationary flow conditions, thus there
is a large discrepancy between two and three-dimensional re-
sults. In nonstationary flow conditions the helical free
vortex changes sign g times per pitch and hence the accumu-
lated effect is mitigated considerably. The higher the fre-
gquency the smaller the effect of the helical free vortices;
therefore the closer the three-dimensional results to the
corresponding two-dimensional case.

The results also indicate that for higher blade-area
ratio, i.e., for wider blade where the interaction between
blades becomes greater, the three-dimensional effect 1s more
pronounced. In fact, Fig. 7 shows that for larger blade-area
ratio, coincidence of the results by both approaches, three-
dimensional and two-dimensional, will be delayed to higher re-
duced frequencies. As the area ratio decreases, coincidence
will occur at lower reduced frequencies; in other words,
three-dimensional effects become less important. The effect
of inverse pitch angle, a , is not as important (in the range
m < a< 2m as is the blade-area ratio. However, it can be
said that the smaller a the closer the three-dimensional load
to the two-dimensional value.

R-940
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For an airscrew propeller with small blade-area
ratio (small solidity) and high pitch angle (small a) the
three-dimensional effects should be less important than for
the marine propeller with larger area ratio and smaller piltch
angle, This conclusion is borne out also by the comparison
on the same figures of the phase angles between downwash -
veloclty and loading obtained by both approaches. It is seen .
that as the order of harmonics increases, the three-dimension-
al value for the phase angle tends towards the corresponding
value for the two-dimensional case. For smaller blade-area
ratio, the deviation is minimized at lower reduced frequencies.

On the basis of the present investigation revision

can now be made of the method used in ref. 3 to obtain vibra- '

tory thrust and torque and the large discrepancy shown

there between theoretical and experimental results can be ex-
plained. The method of ref. 3 was based on the work of
Ritger and Breslin® who used two-dimensional unsteady airfoil
theory in a stripwlse fashion in conjunction with Burrill's

semi-empirical correction factors.?

Burrill's corrections,
which include among others those for three-dimensional effects,
are determlned for stationary flow (steady-state) only. Use

of these corrections in refs. 2 and 3 for both steady and un-
steady flow is now proved invalid. The fact that the calcu-
lated load amplitude in unsteady flow was found to be 1/3 of
the experimental value can now be explained by the results of
the present theory which show that the correction factor for
three-dimensional effects is quite different for stationary

(q = 0) and nonstationary cases. From the figures and .
Table I, it is seen that

i

Rg /o for g = 0

org =y 1
RS/2 for q = 4 3

which indicates that the values of the unsteady loads ob- |

tained by the method of ref. 3 were overcorrected. If the

R-940
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right correction factor were used in the unsteady two-dimen-
sional approach the theoretical result would have been closer
to experiment.

CONCLUSIONS

The unsteady 1lifting surface integral equation is
derived for the marine propeller case and its solution ob-
tained by using the Weissinger approximation. The kernel
function is expressed in closed form after some mathematical
simplification. The applicability of the Weissinger method
for the nonstationary flow case is studied and the results
indicate the valldity of the method up to reduced frequency
1.3 which corresponds to the blade frequency of a four-bladed
propeller of area ratio about 0.4 and of a three-bladed pro-
peller of area ratio of 0.6,

The numerical examples restricted to a four-blade
propeller with sector type of blade form of area ratio 0.22,
0.44 and 0.66 and to a constant amplitude gust show that the
difference between the three-dimensional approach and the
two-dimensional stripwise approach diminishes as the order of
harmonic increases, as the area ratio of the blade decreases
and with increasing pitch-diameter ratio.
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APPENDIX A.
APPLICABILITY OF THE WEISSINGER METHOD
TO THE NONSTATIONARY PROBLEM

In order to clarify the applicability of the Welss-
inger method to nonstationary problems, Sears' sinusoildal
gust problem is treated by this method in this section.

Consider the system shown in Fig. A-1. The induced
velocity due to a pulsating dipole located at (x',y',z') is
obtained in the way described in "Formulation of Problem,"
(egs. 1 to 8).

X-x1! o
35 3 g i T-x+x ") 1
i € .
%z % = DETEDE

(A-1)

it
dr

W(X:Y:Z_vt) =

o
3
=
a

-0

It must be noted here that the dipole axis i1s taken in the
negative z'-direction so that the positive direction of the
11ft will coincide with positive z'. If the dipoles are dis-
tributed uniformly from y' = -« to y' = 4w on the 1/ﬂ—chord
line, the induced velocity upon the 3/4-chord line is

0 +1

L e -2 .

k(T-1) 1

W) = 1im ~2 s 2§ et ——— d7dY  (A-2)
70 THU Yz_SZ o 72472472

where LO is the 1lift per span and k = %‘is the reduced
frequency. The integral part of eq. A-2 is written as

iwt

+1

e 2
¢ = 1im %%5 AR L gray
70 ‘\/’T2+Y2+Z‘2

Y =0 - 00

1

i

.0 ikt o2y
lim e —= = dT (A‘3)
70 9z SH . T +72
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G 1s divided into three parts:

G =2(G +G +¢ )
1 2 3

-c
o ikt Z
G = 1lim e — dT
r Lo 92 5 ) ERE
+e
., 9 ikr 7
G = lim e —= . ar
2" zag 92 g c TE4+Z2
+1
a4 ikr  Z
O g o T (a-4)
+e€

where it 1s assumed that iel <L 1.,

Since the integration range of Gl Includes no
singularity, 1im.§%> can be taken before integration, and G
Z-+0 1

is obtained in the following form:

-€
G =g eik‘T —12- dr
1 T
-0

= % cos ke ~kf + kSi(ke) -1 sin (ke) + 1kci(ke)(A-5)

where Ci and Si are the cosine and sine integrals which are

given by
® t
Ci(x) = - 5 L8 gy
bd
X sin t
and Si(x) = g ==— dt , respectively.
<0
In a similar way,
1 ikT
GS— . T2 ar
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= - cos k + = cos ke - kSi(k) + kSi(ke)

-1 sin k + 1 = sin ke - ikCi(ke) + 1kCi(k).(A-6)

In the integral regilon of Gz,‘ there is a singular
point. Therefore the 1imit Z-0 must be taken last. The
exponentlal is, 1n series form,

KT 1 4 gk - Her)2 ... (A=T7)

The contribution of the first term of G2 is

+e
G =1lim E?Z‘ Z_ gt
2t 7~0 T24Z%
-€
- - 2% (2-8)

That of the second term (and, in general, the terms of odd
powers of T) is zero, that is, '

G .=1im~§Z‘— 1kT —2—dr =0 ( A-9)
72472

The contribution of the third term 1s

(]
Il

. ) 1 2
- Hx
23 %ig oz g 2( T) 72472

= - k2

Summing up these results and taking the limit as €~0 leads to

G = 1lim 2 (G +G +G )
€—*O 1 2 3

5 [-eik

R-940
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dr ( A-10)

+ ik(Ci(k) + 1Si(k) + 1 )] (A-11)




which upon substitution into eq. A-2 leads to:

~-L

lwt [s} .
-—m— [1 - ike

ik
el

Wt) = e ci(k) + 18i(k) + 1 g)] (A-12)

If the upwash velocity at 3/ﬁ~chord point V3 4eiwt is given,

the complex amplitude of the 1ift LO 1s obtained by the follow-
ing equation:

Voo=_° [1-ake”™ (ci(k) +1si(k) +1 D] (A-13)
3/4% 2mwuU
The upwash velocity distribution is given as V(‘x)eia)t where
V(x) may be expanded in Birnbaum's form
V(x) = v, - E v cos na (A-14)

n=1
and V3/ﬂ is obtalned by setting x = 1/2.
However, when the series V(x) is composed of more than
two terms, the stralghtforward application Vé/n = V(1/2) leads

to very poor results for the Weissinger method. This diffi-
culty can be overcome by an averaging process: Vg/ﬂ is taken

as
T
V3/ = % S V(x) (1 - cosa) da (A-15)
0 o
where x = - cos o and the integral operator % S (1 - cos a)
da is nothing but Glauert?s 1ift operator. 0

If eq. A-15 is used in the stationary state case, the
Welssinger approximation gives exactly the same results as
thin airfoil theory. On expanding V(x) in Birnbaum's form
and applying the Glauert integral operator, 1t is easily
found that the result obtained is the velocity at 3/U4-chord
point due to the first and the second term components of the

R-940
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upwash velocity V(x) in the Birmbaum form.

It must be noted once more that the application of the
operator gives exact results only in the statlonary case.
However, in the following, the application of this operator
to nonstationary problems 1is tried..

In Sears' sinusoidal gust problem, the upwash veloclty
V(x,t) is given in the form of

1af t—%%
V(x,t) = Voe (A-16)
and with x = - cos a
V( X, t) — Voei(l)telk COoS O (A—l?)

where k = %-is reduced frequency. If the integral operator

1s applied
it
= 1 ik cosa
v3/4~voﬁg (1 ~ cosa ) e da
0
v o
=V, %- S (1L - cosa) (Jo(k) + 2 zz: ian(k)cos na)da
0 n=1
=V, [Jo(k) - iJl(k)] (A-18)

On substituting in eq. A-13.

L
v [ (k) - 17 ()] = zBy + (1 - dke™(0i(k) + 181(k) + 1) ]

(A-19)

The value of Lo/éWMUVO from eq. A-19 1s shown in Fig.

A-2. In the figure, the exact Sears' value is also plotted,
The agreement between them is fairly satisfactory in the re-
duced frequency region from © to 1.3. The value of reduced
frequency 1.3 corresponds to the blade harmonic (g=N) in a
propeller of area ratio about 0.4,

R-9L40
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APPENDIX B.
GEOMETRICAL MEANING OF THE
SIMPLIFICATION IN THE KERNEL

The simplified expression of the kernel, egs. 24,
is obtained from the original kernel equation, eq. 22, by
using two approximations, one in the integral path and the
other in the direction of differentiation. The validity of
these simplifications becomes clear when the geometrical
significance of eq. 22 is compared with that of eqs. 24.

Fquation 22 indicates the following manipulation:
the inverse of the Descartes distance,

1 _ 1
R[( O,r, 0) (X, P 9)] ’\/X2+I'2+p2—-2]:’p cos ©

5

which has its ends on a group of helicoidal surfaces

(n=1, 2,.....,N), is differentiated at both ends in the
directions perpendicular to the surfaces and then integrated
moving the end (X,p,@) along the helical trajectory on the
helicoidal surface X = % 6 - % én'

On the other hand, the simplified eq. 24 implies a
similar procedure, but, this time, the helicoidal surfaces
are replaced by segments of planes. Since the greatest con-
tribution of the integral in eq. 22 and egs. 24 arises in the
rather narrow region, where the helicoidal surface in eq. 22
can be regarded as a plane, eqgs. 24 can be a very good ap-
proximation for eq. 22, because in this region the relative
direction of the differentiation with respect to the vector

(0,r,0) (X,p,0) is the same in both expressions. Numerical
results have been obtained for K, when r = .75 and p = .85

6 36
and X i1s taken from §% to R derived from both expressions
and from eq. 38 where the summation is replaced by integra-

tion. They are compared in the following:

R-940
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tompmpnde § [

90 390
Eq. 22 from X = '2-5' to ry
Egs. 24, m = 1
) 36
- _0 0
qu 38 from X = 5a to —é—a"—

Ko

for = .75,

VR o}
nn

rte]
(1]
O
°
]

- 24,7 -

~ 23.8 -

.85
T

9.6
9.0

10.8

The agreement among them is satisfactory for practical pur-

poses.

The values of K,

from eq. 22 and from eq.

rived from 24 are compared below for the same values of

r=.75and p = .85. (The

for the calculations.)

ol K,(eq. 25)

0 228,0

1 224,3 - 5,741
L 200.8 - 19.01i

half-angular chord 9b=¢o - 6

K, (eq. 22)
a=2r a =37 a=
2

218 214 205
216 - 61
194 - 181

R-940
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APPENDIX C.
EVALUATION OF INTEGRAL

7"/u i2q¥
e
I =
q g

” (\Jl—kzsinzw)S
L

Watkins'® derived the recurrence formula for the

i) N
) and W& = 0. A somewhat

dy

special Integral limits wu =
similar method gives the formula for general integral limits.

In the first place, the following notatlions are in-

troduced:
18 ='2//L1 eleny dy
v,n (1-12s1n2y) /2
Yy
= Igjn + 1 Iign (c-1)
k2 ¥, |
cos2ny sin2ny
- ay + 1 4
8 (1-K2sin2y) /2 s (1-K2sin2y) /2 v
vy | v,

The expression

cos 2(n+l)y+cos 2(n-1)¢=cos 2n¢(2-q')+ i% cos 2ny(1-k2sin3y),

=
K (c-2)
gives the relation
¢ c _ 2 c 4 e
Is,n+1 + Ia,n—l_ 2(1—';2) IS,n + ;E‘Il,n (c-3)
Alsoy, 1f the relation
sinycosy dy = L 1
(1-kZsin?y) Y K2 (1-k2sin2y) Y2 (c-4)

is used, the following expression is obtained:
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- ik Peomimetcsd [

1 _1¢ - i sin2ny o _2n c
a,n+l  T8,n-1 12 (l—kZSiHZW)l/é K2 1D (c-5)
L}
Eliminating Ii n from egs. C-3 and C-5,
2
c c _ 2 c
(2n-1) Ta,ne1 * (2n+1) Ts,p-1 = In(1 ——EE) e n
L sin2ny Yy
+— (c-6)
5 (1-ksin2y)1/2
w&
In a similar way,
‘ 8 8 - 2 8
(2n-1) To 1 ¥ (2n+1) To, o1 = Mo (1 - 3?9 Ts n (c-7)
_A4 cos2ny u
2
K (1 y2gin2y) /2
w&
Thus, considering
e =
Ts,a = %q (c-8)

and using the relation of eq. C-1, the recurrence formula for

Iq is written as
I .= M (1.-2)71 421

atl = 2o = fat Tt

q-1

N cleay Yy (c-9)
2q-1 k2 (1—kzsin‘27,l/)1/2
Ve
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In order to use this formula, the evaluations of IO and Il

are necessary. Some elementary calculations give

| . v
Ig o~ ! [E( kﬂ/’) - k*® (1/2) sin2y :| v 5
>
1-k® (1-K2sin?y)1/2
Yy
S
I$ 6=0,
(Z
L, =(1-2) 18 o + 2 Flk,y)| ® (¢-10)
s 1@ 3y 12
v,
and
Y.
12 = 2 1 u

1 T
TR (1-k2sinty) /2
Yy,

where F(k,y) and E(k,¥) are the first and the second kind of
incomplete elliptic iﬂtegral. Combining the cosine and the
sine terms,

To = 15,0 = 10 [E(k,w) - ¥ M} T, (o)
1~k Vi1-K2sin2y
Yy
e 2 2 1/ju
I, =I5 1 =(1-2) 15+ 2 Flk,9)
’ K2 k2
1)
+ 1 2 ! wu
1® (1-x2sin2y) 1/2 (c-12)
Ve
R-940




[P ) Jons & 4

Mot [P

APPENDIX D.
INTEGRATION Jl

The contribution of the small area including the

singular point © = 6, p = ry is

rp+€o vy

32 gtd®

J. = lim - 48 dp
x+0 dx® Vk2+r2+p2—2rp cos®

= - D"'l
p=r -€ (D-1)

0d0O= -7y

As is stated in "Evaluation of The Kernel (Kl)" on p. 10,
the case of lvf¢:l, €, rp is considered. Therefore

Of+y
J, = lim -9 L de do (D-2)
%50 dx2  AxZt+e2+r 2 02
€ b
-0 -y
and taking the lim finally
x-0 :
1
IS = (D-3)
Py (ryv) (eg)
Therefore,
. 1
lim J, = -4 (D-4)
€6+O 1 rp€O

R-940
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APPENDIX E.
INTEGRATION J,

3

The integration domain does not include the singular
point, therefore J3 can be evaluated by the recurrence re-
lation obtained in Appendix C. However, the limiting process
d—*O precludes using a numerical method for the p integra-
tion. In this section this difficulty is overcome by evalua-

ting the integral in an approximate but analytical form made

€

possible because B, B, << rp.
The limiting procegs is taken first, then In ellip-

tic integral form,

0
—l( = 0
=H 8 _+5=)
| rp—eo rp+52‘ 2 n 2
Jo=(-1)%F 2 S + . 5 __ePW __ aydp
r -p 7T te (rp+p) n=1 \/1—kzsin2¢

b p 0

l — —
! E(ﬁ+6n—9b)

br o
where, k2 = 1 (E-1)
(rtp)2

Further, JS is divided into two parts,

N rp+B2 -7 12
Tap=(-1)¢1 2 g + S SH S apdp
rp—ﬁl rp+€O (rp+p) 0 \f(l—kzsin*¢)3
(E-2)
ru €0 rp+Bz - %(ﬂ—é£> -
S (T ey
B Tryteg p 0 _ %(ﬂ+ig)

(eq. E-2 con't. on next page)
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T = R S N v

l( = 50)
- =m0 _+m=-
+-§% =one i (E-3)
s s dydp
n= 1, = = N1-k2sin?y

- §( m+0 —Gb)
wlith k2 = 4rpp and

(rp+p)2

k? =\{1 - k=

Js, can be written as

_ - +
JBI— Jél + J31

b ~

g,- = (-1)9t _2 Ty
81 (Qrp)z (1+kt) ', k!
_‘o
2rp—€o
> (E-4)
Bz :
g7 = () 2Rt (1) 10 aie
- (2rp)2 !

€0
2rp+€o _/}
ei2qw ‘
where I' = — {1 (E-5)
4 0 N 1-k®sin?y
The recurrence relations obtained in Appendix C can be adapted
for the elliptic integral I'q. Then

R-940
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In
_ —q_ 1+k 12 2q+1
It = [ 5T (1) 1 T I 1] (E-6)
I'O = - __?__ < k’2> (E'7)
k
2

where K(k) and E(k) are complete elliptic integrals of the
first and second kind. These formulae give

> ‘
Ity = —[ET? E]

I = - [(4Q2—3) ZrE -k —i—%ﬁv K] (8-9)
= | (32 g3 - 22 gy _2 . (32 42 _ 5 4

I?S "[(3 Q 3 Q) k72 E (3 Q 3) l_k?g ]

_ 128.4 144 5, 21y 2 128 s 48 | 4

It,= -[(—E—Q - 5 ) - (—B—Q - T;Q)itiigK]

In the following treatment, since B ,, B, << rp and
hence k' << 1, the terms smaller than the zero power of k'
in the integrand of eq. E-4 are neglected. The elliptic in-

tegral E and K can be expanded in powers of k°'Z as

1 4 1 3 !
BE=l+g(nde-g) 1t Sln Lo Pt e
_ 4 1 4 9 N 7
K = 4n —Tk +E(/e/l’l'rc~r— 1) kgz +a_(&nk~r - 'g)kv4+ o o s

(E-10)

Hence, from egs. E-9, a sufficient form of I'q for the above-
mentioned approximation is

R-9L40O
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s J—— [t =7 = o] Totmaid Lo owenaac e

e (_4)yat+l _ 2 1 o
Iy % ()% 2{fie(a-btne) k2] (G + 8 )-(o k') B, |
(E-11)
where
a = %(&n4 - %)
1
b=-é—
c = Ank
and
. 2
Aq Bq = 29
q=0 0 0
1 2 2
2 16 8
3 134/3 18
4 448/5 32

Eq. E-4 becomes

B,
i 1 2rp—Bl
317 (p )2 1, ‘ 1 ‘
( p) [k‘z + &nk'(Bq-b)+(Aq+a—ch)+ ET] dk*
€
0
2rp—€o
By
1 [ L+ %t (4nk'-1) (B -b)+k'(A +a-B_c)+ink’ #rpPa
JRESER N T q TP T
' €
0
2rp—eo
(E-12 con't)
R-940
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2rp+ R
Tot & =2 [~ e+t (enkt-1) (B_-b) +k' (& _+a-B o) -ink']
81+ (r )2 k! q a q
b €
O £
2rp+eo
If B, and B, are chosen to sat;sfy the relation
B Bz .
- (=x'.) o (E-13)
2rp—ﬁl‘ 2]:’p+[52 i/ 2
1im Jal ig given in the following form:
e~—20
0
lim g, = lim (57 + 3,7)
edao EOAO
— 2 - _1__ t t . -
- G [ R (tnk' -1) (B,-D)
P 1
+ k', (Aq+a - ch)}
. h
+lim o (E-14)

As is seen in eq. E-3, even the point in the inte-= :

gration domain of J;, which 1s closest to the singular point
is at a distance from it equal to rpeb, where §£ is the
angular semi-chord.

If Bl and B, are very small compared to rpeb, k
can be assumed unity throughout the whole integration domain
of Jaz. Thus,

R-940
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G AR R R e @

Enn—ggigg wnl

€
Tee & 1im (-1) 22, - O] o
eo—éO P -'p
1 A 1 = 56
- §(ﬂ—9b) ~TT %% - §(w%‘9n+ =)
IR - -
I q( . + = )
0 - % (7 - Hm+o -6,)
(E-15)
where
i2qy ‘
Ivlq __;j ___e_.__.___._s d?// (E—l6)
1-sin®y

The recurrence relation obtained in Appendix C holds also for
I‘”q, but in this case it becomes

I”q+1-= 5%%T (—1)1"q - gqf% Ii'q—l - 1(%) 23—1 iiiqz
Ity =t 5_2—152%// + L anftan (5 + 322)|

Ity = (-1) Iy + 2 F (k=l, ¢) + 12 (%) C_Oh (E-17)
(T11,=F 23:;2% £ 3 tnltan (T+ %]y o

where the double sign should be taken in the following sense:
+ for the region cos ¥ >0
- for the region cos %<0
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FIGURE A-2. APPLICATION OF WEISSINGER METHOD TO SEAR'S GUST PROBLEM
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